
SEMA
Symbolic Execution toolchain for
Malware Analysis - Packing
By Christophe Crochet & Charles-Henry Bertrand Van Ouytsel & Khanh Huu The
Dam & Serena Lucca
Under the supervision of Axel Legay

CyberExcellence-2022

1

Malware analysis to defeat them all

Symbolic Execution you said ?

SEMA

Packing is kinda a problem

What's next ?

2

Malware analysis to defeat them all

Symbolic Execution you said ?

SEMA

Packing is kinda a problem

What's next ?

3

Malware analysis to defeat them all

Malware

= "Malware is a piece of code which changes the behavior of either the operating system
kernel or some security sensitive applications, without a user consent and in such a way
that it is then impossible to detect those changes using a documented features of the
operating system or the application (e.g. API)." - Introducing Stealth Malware Taxonomy

Malware Analysis

= Process to understand behavior of suspicious program

4

Malware analysis techniques

Static analysis

= Malware analysis based on syntaxic properties defining a signature

Example of tool: Yara

Dynamic analysis

= Malware analysis based on program execution

Example of tool: volatility

5

Malware analysis techniques problems

Static analysis

• Easily tricked with variants

• With encryption/packing

• Example: detecting string "I'm evil"

ULONGLONG uptime = GetTickCount();
Sleep(500000);
ULONGLONG uptimeBis = GetTickCount();
if ((uptimeBis - uptime)<500000 || IsDebuggerPresent()){

MessageBox(NULL,"Hello world!", "", MB_OK);
} else{

char message[20] = "";
HINSTANCE hlib = LoadLibrary("msvcrt.dll");
MYPROC func = (MYPROC) GetProcAddress(hlib,

"strcat");
(func) (message, "I'm ");
(func) (message, "evil!!");
MessageBox(NULL, message, "", MB_OK);

}

6

Malware analysis techniques problems

ULONGLONG uptime = GetTickCount();
Sleep(500000);
ULONGLONG uptimeBis = GetTickCount();
if ((uptimeBis - uptime)<500000 || IsDebuggerPresent()) {

MessageBox(NULL,"Hello world!","", MB_OK);
} else {

char* fl[2] = {"cat","str"};
char buf[10],message[20];
strcpy(buf, fl[1]);strcat(buf, fl[0]);
HINSTANCE hlib = LoadLibrary("msvcrt.dll");
MYPROC func = (MYPROC) GetProcAddress(hlib, buf);
(func) (message, "I'm "); (func) (message, "evil!!");
MessageBox(NULL, message, "", MB_OK);

}

Dynamic analysis

• Anti-debugger

• Time constraints

• ...

• Example: detecting string "I'm evil"

7

Malware analysis techniques problems

Dynamic analysis

• Anti-debugger

• Time constraints

• ...

• Example: detecting string "I'm evil"

8

Malware analysis to defeat them all

Symbolic Execution you said ?

SEMA

Packing is kinda a problem

What's next ?

9

Symbolic Execution you said ?

• Program execution of all possible paths (in theory)

• Symbolic execution engine

• Symbolic memory store (SM)
• For symbolic value &

• Symbolic expression

• SMT solver use for satisfiability during path exection
(post/pre)

<INIT>
if (<CONDITION>) {

<exit>
} else{

<P2>
}

SM : /
Post: True

SM : <x1:v1,..>
Post: True

SM : <x1:v1,..>
Post: <cond> =
False

SM : <x1:v1,..>
Post: <cond> =
True

<P2>

10

Symbolic Execution you said ?

• Program execution of all possible paths (in theory)

• Symbolic execution engine

• Symbolic memory store (SM)
• For symbolic value &

• Symbolic expression

• SMT solver use for satisfiability during path exection
(post/pre)

<INIT>
if (<CONDITION>) {

<exit>
} else{

<P2>
}

SM : /
Post: True

SM : <x1:v1,..>
Post: True

SM : <x1:v1,..>
Post: <cond> =
False

SM : <x1:v1,..>
Post: <cond> =
True

<P2>

11

Angr(rr)

• "Open-source binary analysis platform
for Python"

• Designs goals:

1. Cross-architecture support

2. Cross-platform support

3. Multiple analysis paradigms support

4. Usability

(State of) The Art of War: Offensive Techniques in Binary Analysis
Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, Giovanni Vigna 12

Angr(rr)

Angr in a nutshell:

13

Malware analysis to defeat them all

Symbolic Execution you said ?

SEMA

Packing is kinda a problem

What's next ?

14

SEMA

• Open-source project too !

• Build on top of Angr

• Goals:
1. Malware detection
2. Malware classification
3. Collaborative works
4. System calls graph (SCDGs) based analysis

15

SEMA

SEMA in a nutshell:

1. SEMA-SCDGs

2. SEMA-Classifier

3. SEMA-FL

16

SEMA

SEMA in a nutshell:

• SEMA-SCDGs
• ELF & PE programs

• Custom explorations techniques
(CDFS & CBFS)

• Track of executions paths with SCDGs

17

SEMA

SEMA in a nutshell:

• SEMA-Classifier
• Use SCDGs produced as signature

• Graph mining model (gSPAN)

• SVM with graph kernel model

• Deep learning model

18

Standalone

19

SEMA

SEMA in a nutshell:

• SEMA-FL
• Trust server model

• N clients with their own database

• Only deep learning model

• Homomorphic encryption for shared parameters

20

Adding Federating Learning

21

Malware analysis to defeat them all

Symbolic Execution you said ?

SEMA

Packing is kinda a problem

What's next ?

22

Packing is kinda a problem

What is packing ?

• Obfuscation technique use to hide original
program

• Formatting, compression, etc

• Stub routine to unpack the original code

• E.g: UPX, PE-packer, etc.

Original
program

Packed
program

New PE
header

Unpacker

packer

23

Packing is kinda a problem

What is packing ?

• Obfuscation technique use to hide original
program

• Formatting, compression, etc

• Stub routine to unpack the original code

• E.g: UPX, PE-packer, etc.

Original
program

Packed
program

New PE
header

Unpacker

packer

24

Concolic Execution

Challenges:

• Find original entry point of the malware

• Synchronize the state after concrete execution

• Dealing with modified headers

Idea = Concolic Execution with Symbion

• Execute concretly the unpacking routine

• Execute symbolically the original malware

25

More concretly...

26

• Memory dumping for
multi-layer packer

• Header reconstruction

Malware analysis to defeat them all

Symbolic Execution you said ?

SEMA

Packing is kinda a problem

What's next ?

27

What's next ?

• Extend federated learning to all models

• Support new types of programs (.NET, Java, Macros Excel, …)

• Extend exploration techniques

• Manage packed programs

• Manage obfuscation techniques

• Many more

Concolic execution

28

What's next ?

• Extend federated learning to all models

• Support new types of programs (.NET, Java, Macros Excel, …)

• Extend exploration techniques

• Manage packed programs

• Manage obfuscation techniques

• Many more

Concolic execution

29

What's next ?

• Extend federated learning to all models

• Support new types of programs (.NET, Java, Macros Excel, …)

• Extend exploration techniques

• Manage packed programs

• Manage obfuscation techniques

• Many more

Concolic execution

30

Toward Formal Specification
of QUIC attackers with IVy
By Christophe Crochet & Tom Rousseaux
Under the supervision of Axel Legay

CyberExcellence-2022

1

QUIC is the future

Methodology for the formal verification of QUIC

Previous work

Attacker model

2

QUIC is the future

Methodology for the formal verification of QUIC

Previous work

Attacker model

3

QUIC is the future

• QUIC: a new secure transport protocol

• Intended to replace TCP

• RFC9000 = textual document

• Importance to test compliance of QUIC to its specification

• Formal verification versus interoperability tests

4

UDP

Protection

Packet

Frame

Security

Application

QUIC, a protocol with innovative features

• QUIC connection

• QUIC multiplexing

• QUIC migration

• Extensibility

TCP + TLS QUIC + 0-RTT

TCP
Handshake

TLS
Handshake

Data
transfert

Client ClientServer Server

5

QUIC, a protocol with innovative features

Methodology for the formal verification of QUIC

Previous work

Attacker model

6

Randomized and Network-centric Compositional testing

QUIC frame mirror

Frame
1

Frame
2

Frame
3

Frame
5

Frame
8

Frame
7

Frame
4

Frame
6

Frame
9

Packet 1

Frame
2

Frame
6

QUIC packet mirror

Packet 2

Frame
4

Frame
7

Network

requirements

Shim

requirements
7

Frame
6

QUIC, a protocol with innovative features

Methodology for the formal verification of QUIC

Previous work

Attacker model

8

What we done

• Update the model to RFC9000 (from draft 18)

• Errors found in every implementation
• Tested on 8 implementations

• Problems in the draft detected
• Ambuiguities

• One implementation improved

9

Main problems founds

10

1 Violation of the specification

2 Feature not implemented

3 Internal errors and crashes

4 Problem in the draft

QUIC, a protocol with innovative features

Methodology for the formal verification of QUIC

Previous work

Attacker model

11

Attack model

• Instead of formally specify QUIC protocol from RFC9000

• We formally specify "Man in the Middle" attacker of QUIC

Difficulties:

• No clear specification

• Localhost

• Usually attacks are very specific

12

Attack model

• Instead of formally specify QUIC protocol from RFC9000

• We formally specify "Man in the Middle" attacker of QUIC

Difficulties:

• No clear specification

• Localhost

• Usually attacks are very specific

13

Man in the Middle

• MitM =

• attacker placed between communication(s)

• Able to listen/alter the communication(s)

• Endpoints are not conscious of the attacker

14

Man in the middle: Template model

15

Man in the middle: Template model

16

Simulator

17

Simulator

18

Simulator

19

What's next ?

• Develops more complex templates

• Extend the methodology to other protocol (i.e DNS)

• Improve the GUI for easier configuration

• Many more

20

Any question ?
Thanks for your attention

21

