
Improvements for stateful
fuzzing

Presented by Martin Vivian

Promoter : Axel Legay



What is fuzzing

• Fuzzing is an efficient testing method to discover vulnerabilities in a 
system. This approach consists of an automated generation of inputs 
for a program.

• Two types of programs stateful and stateless



Stateful and Stateless

Fuzzer

M1

M2

S

M1'
S1 S2 S3

M2' M3'M3

Stateless fuzzing

State machine
S

S

Fuzzer

M1'

M2'

S1

M3'

Stateful fuzzing

S2

S3



Stateful

• Each message have their grammar

• Order of the message in this example, we must send M1' before M2' 
to reach S3

M1'
S1 S2 S3

M2' M3

State machine



Case study

• Two entities that communicate (client/server)
• Trafic not encrypted
• The client must be tested

Problem
• Proprietary protocol
• No source code
• Some knowledge about the structure of the frame
• No knowledge about the state machine

Client Server



Solution 1 : Fuzzing in MITM

• The fuzzer is between the client and the server

• The fuzzer modifies traffic between the fuzzer and the client

Client Server

Test machine

Fuzzer



Description

• Fuzz the client

• Fuzz a small part of the received request

• Some parameters in the frame were recalculated like crc

Client Server

Test machine

Fuzzer

AAAABBBBCAAABBBB



Description

• Only a ratio of requests are fuzzed to be able to reach and test the 
other states

Client Server

Test machine

Fuzzer

AAAABBBBCAAABBBB

Ratio : 2/3

CCCCDDDD

EEEEFFFFF

CCCCDDDD
EEEEFDFFF



Solution 2 : Pulsar

• Software developed by the University of Gottingen

• This software is for fuzzing proprietary protocol

How it works ?

• Find the state machine of the system from networking traces

• Deduce the rules for the transition state and messages templates

• Fuzz a program according to the deduced model



Pulsar process

Fuzzer

Dataset : 
Networking traces

Model : templates, 
messages rules, 
states

Messages generated
by respecting the 
model



Results

• First approach
• Memory management

• Some bugs implementation

• Pulsar approach
• It does not work for complex protocols



Comparison between the two approaches

MITM Pulsar

Rules, templates - +

Correct inputs + -

Efficient fuzzing - +

Time to configure - +



Pulsar in Mitm

Fuzzer (Pulsar)

Client

Server

Test machine



Pulsar in Mitm

Fuzzer (Pulsar)

Client

Server

Test machine

- Check if M1 
corresponds to the 
model

- If yes, it sends the 
fuzzed query
respecting models
(M1F)

M1

M1F



Expected results

• An efficient fuzzer compatible with the maximum of the stateful
program and then the less loss of time to configure it

• Able to find new bugs or vulnerabilities in systems

• Possibilities to improve the initial model during the execution



Future work

• Manage different types of packets (packets control, telemetry...).
• For the moment packets contol falsifies the model

• Work on differents IP layer
• Use information from code sources when available
• Improvement of the quality of the models

• better recognition of rules, recognition of crc...

• Work with encrypted traffic



Questions ?

Thank you for your attention


