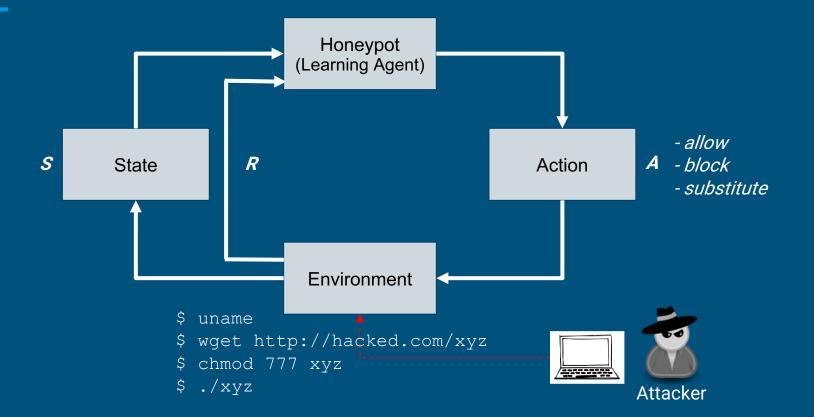


Adaptive Self-guarded Honeypot

PhD Student : Sereysethy Touch (sereysethy.touch@unamur.be) Supervisor : Prof. Jean-Noël Colin

Affiliation: Faculty of Computer Science, UNamur


CyberExcellence, UMons, 08/11/2022

Research objective

Build an adaptive (smart) honeypot using the SSH protocol to achieve two primary objectives:

- 1. Interact with the attackers to collect their tools.
- 2. Defend itself from being deeply compromised.

Our approach: a honeypot as a RL agent

Our approach

- Different representations of the environment state
 - o Only command
 - Command + arguments
 - Command + arguments + the honeypot environment (CPU, Memory, Network flows, etc.)
- Actions
 - Allow
 - Block
 - Substituer
 - Terminer
 - Nop
- Different reward functions
 - o Simple: environment state and action
 - Complex: env. state, action, context, risk level, honeypot environments
- Learning algorithms
 - Model-Based
 - Model-Free
 - o ..

First Result: Asgard (Touch & Colin, 2021)

- Simple environment state
 - o command
- Action:
 - Allow
 - Block
 - Substitute
- Reward function
 - Environment state + action
- Learning Algorithm
 - Q-learning: a tabular function
- Evaluation (Touch & Colin, 2022)
 - Cowrie: a low-interaction honeypot
 - Real Linux System: a high-interaction honeypot
 - Midgard: a variant of Asgard

Challenges

- Rich environment state representation
 - How to effectively represent the command, its arguments and other honeypot parameters
- Complex reward function
 - How to combine different factors to reward the agent to learn
 - E.g: how to define a risk level associated to to each command
- Learning algorithm
 - When the state space and the action space increases, a more complex Q-function is also considered: a linear function and a neural network

Thank you

- Touch, S., & Colin, J. N. (2021, October). Asguard: Adaptive Self-guarded Honeypot. In *17th International Conference on Web Information Systems and Technologies-Volume 1: DMMLACS*, (pp. 565-574). SciTePress.
- Touch, S., & Colin, J. N. (2022). A Comparison of an Adaptive Self-Guarded Honeypot with Conventional Honeypots. *Applied Sciences*, *12*(10), 5224