
Institute of Information and Communication Technologies,

Electronics and Applied Mathematics

Software Testing meets Formal Verification for the
Good

Tom Rousseaux, Christophe Crochet, Axel Legay

QUIC

QUIC is a new transport protocol intended
for widespread use on the Internet. Built
over UDP, it is designed to replace the en-
tire TCP/TLS/HTTP stack while combining
the benefits of TCP and TLS. It is described
in the RFC9000 and specifies some inno-
vative features as 0-RTT connections, mul-
tiplexing, connection migration, etc.

Application

Security

Frame

Packet

Protection

UDP

Client Server

Client Server

TCP + TLS​ connection

0RTT connection

QUIC stack

TCP handshake


TLS handshake


Data transfert


Data transfert


Even if QUIC implementations are young,
the protocol is used in production.

Implementation Language SLOC Company Version
picoquic C 84k Private Octopus ad23e6c
picotls H2O 47327f8
lsquic C 129k LiteSpeed Tech. v2.29.4

boringssl Google a2278d4
quic-go Go 73k - v0.20.0
quinn Rust 41k - 0.7.0
aioquic Python 19k - 0.9.3
quiche Rust 58k Cloudflare 0.7.0
quant C 18k NetApp 29
mvfst C++ 105k Facebook 36111c1

Verification

To verify implementations, a common ap-
proach, called interoperability testing, is to
manually generate sets of tests and then
to compare implementations behaviours.
Albeit such approach sounds appealing, it
is limited by the capacity to manually pro-
duce interesting test suites from the re-
quirements and it compares implementa-
tions with each other, not with the specifi-
cations.
Another approach is to produce a mathe-
matical model for the protocol and its re-
quirements, and then use formal verifica-
tion to automatically assess correctness of
the implementations.

Formal Methods

Formal methods are sound and precise.
But, they suffer from the state explo-
sion problemwhichwould occur due to
QUIC implementations sizes.

”Verifying QUIC implementations
using Ivy”

Ivy is a protocol specification, modeling,
implementation, and verification tool.

Subsequent packets sent in the same
packet number space MUST increase the
packet number by at least one.

←→
require pkt.seq_num =

last_pkt_num(scid,pkt.ptype)
A formal Ivy model of the protocol is de-
fined as a set of components linked by
their input/output as the frame layer 1⃝ or
the packet layer 2⃝. The shim component 3⃝
acts as a link with the network. Each com-
ponent only generates correct items.

QUIC frame component

Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Frame 7 Frame 8 Frame 9

QUIC packet component

Frame 3 Frame 5 Frame 2

Frame 5 Frame 7 Frame 9

Packet 2

... ...

Net

Packet 1

Frame 2 Frame 9

Packet 3Frame  
requirements    

Packet   
requirements   

Generated

Received

Random
Process

+
Solver

Shim
component

1 2

3

Tests are also written in Ivy. They define a
specific feature to be tested.

q
u
in
n

m
vf
st

p
ic
oq

u
ic

q
u
ic
-g
o

ai
oq

u
ic

q
u
an
t

q
u
ic
h
e

stream 79% 6% 56% 95% 18% 12% 97%
max 85% 3% 47% 39% 27% 21% 96%
reset_stream 29% 7% 61% 100% 24% 5% 98%
... ...
Each test is run several times and different
results may be obtained because tests are
random and vary due to internal protocol
timeouts (race condition). Indeed, packet
generation is very slow. Thus an error can-
not be reproduced with certainty.
Some specifications cannot be verified
and some of them apply on timing prop-
erties.

81 41 41 21 81
Cannot be verified Original work Fully implemented Partially implemented Future work

Discrete-Event Network
Simulator

Discrete-event network simulators inter-
cept API calls and emulate them. They
connect processes through an internal
network. They consider code execution to
be instantaneous.
This let control over the processes time
perception, and thus let verify timing
properties. By ignoring real execution
time, it produces deterministic results,
which solves race conditions.

Application KernelSyscalls Net

Application KernelSyscalls

intercepted

Sim interface Simulator
network

Normal behaviour

Network simulator

Device

The two most promising discrete-event
network simulators are ns3-DCE and
Shadow. ns3 is powerfull network simula-
tor. ns3-DCE is a framework for ns3 which
allows direct code execution. It emulates
GLIBC calls and can only be used with C
programs. It is not very well maintained.
Shadow is an active project still in develop-
ment. It simulates directly syscalls allow-
ing to run any program.

Attacker models

Another extension to Ivy is to allow to
model attackers.

•Man in the Middle (MitM) model for
QUIC
•Multiple way to control the connection
•All entities presented in the figure have a
model
•To extend with other attacker models
and protocols

Reflection
attacks
Control

connection

Client Server

Victim

MitM


