# AN INTRODUCTION TO PHYSICAL UNCLONABLE FUNCTIONS AND THEIR APPLICATIONS

Cédrick De Pauw Université Libre de Bruxelles



| Motivations                                                                                                    | Silicon PUF Examples                                                                                                            | Applications                                                                                                     |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Many problems with the security of IoT devices:<br>• Initialization of communication channels<br>without trust | SRAM PUF                                                                                                                        | Setup [3]:<br>• SRAM PUF and Arbiter PUF<br>• Device enrollement: (ID <sub>d</sub> , SRAM <sub>k</sub> , (C, R)) |
| <ul> <li>Limited computational resources and battery<br/>autonomy: no encryption</li> </ul>                    | <ul> <li>Based on a Static Random-Access Memory<br/>(memory-based PUF)</li> </ul>                                               | Two-factor mutual authentication                                                                                 |
| •<br>⇒ Hardware-intrinsic security                                                                             | <ul> <li>Source of randomness: variations between inverters<br/>from SRAM cells</li> </ul>                                      | protocol                                                                                                         |
|                                                                                                                | <ul> <li>Challenge bits (optional): SRAM cells to select</li> <li>Response bits: (selected) SRAM cells start-up val-</li> </ul> | <ul> <li>IoT device and server prove they know the<br/>SRAM key</li> </ul>                                       |

**Physical Unclonable Function** 

#### Overview:

- Hardware-based black-box function
- Based on **physical variations** caused by manufacturing processes
- Unique, unpredictable and hard to clone
- Input (optional): challenge, output: response
- One or many CRPs (challenge-response) pairs)
- Require a fuzzy extractor to provide reliable responses

Advantages:

- Secure key storage  $\rightarrow$  encryption
- Challenge-response function  $\rightarrow$  authentication

## **PUF Classication**

**Intrinsic and Non-Intrinsic PUF** 

#### Weak PUF

ues









## **Arbiter PUF**

- Based on gate propagation delay in arbiter PUF circuits (**delay-based** PUF)
- Arbiter PUF circuit: circuit built with multiplexers and a latch (arbiter)
- Source of randomness: variations between **multi**plexers
- Challenge bits: input to multiplexers
- Response bits: **fastest paths** pointed by arbiters Strong PUF

 IoT device proves it knows the corresponding PUF response

SRAM key





## Session key establishment protocol

- Server sends a session key  $S_k$  encrypted with  $\mathrm{SRAM}_k$
- Future messages are encrypted with  $S_k$



Challenge:

- A PUF is *intrinsic* if its construction is such that:
- measurement of its characteristics is **internal**,
- introduction of its source of randomness is **im**plicit.

Otherwise, it is *non-intrinsic*.

## Implementation Technologies

#### Non-electronic/hybrid PUFs

 random variations in non-electronic materials, • conversion to electronic signals, • example: Optical PUF.

#### Electronic PUFs

 random variations in electronic materials, • example: Power Distribution PUF.

#### Silicon PUFs

random variations in silicon chips,

• example: SRAM PUF.



Fig. 2: Arbiter PUF circuit [1].

# **Fuzzy Extractor**

1. Generation procedure: reference PUF response  $\rightarrow$  (helper data, key)

2. **Reconstruction** procedure: (noisy PUF response, helper data)  $\rightarrow$  key



Fig. 5: Key establishment [3].

## Acknowledgements

Funded through the CyberExcellence project from the Walloon Region. This research will cover the following workpackages:

• WP1: task 4

• WP5: tasks 1 and 3

• WP6: tasks 2 and 4

## References

[1] R. Maes. Physically Unclonable Functions: Constructions, Properties and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. ISBN: 978-3-642-**41395-7.** DOI: 10.1007/978-3-642-41395-7. URL: https://doi.org/10.1007/978-3-642-41395-7. [2] G. J. Schrijen. *Physical Unclonable Functions to the* Rescue A New Way to Establish Trust in Silicon. 2018. [3] A. Mostafa, S. J. Lee, and Y. K. Peker. "Physical Unclonable Function and Hashing Are All You Need to Mutually Authenticate IoT Devices". In: Sensors 20.16 (2020). ISSN: 1424-8220. DOI: 10.3390/s20164361. URL: https://www.mdpi.com/1424-8220/20/16/4361.

### **Security Levels**

A PUF is *strong* if it satisfies two conditions:

• its CRPs space is **very large**,

• it is **impossible to predict** the response to an unknown challenge.

A PUF is *weak* if its CRPs space is **small**, at worst of size one.

Fig. 3: Fuzzy extractor procedures [2]. Dotted arrows: generation procedure; plain arrows: reconstruction procedure. Notation: w and w' respectively are the reference PUF response and a noisy PUF response, h is the helper data.