

An introduction to Physically Unclonable Functions (PUFs)

by Cédrick De Pauw on May 22, 2023

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

Fuzzy Extractors

» Context

IoT Technology

- * Growth in popularity.
- * Many IoT applications: smart health monitoring, smart homes, smart grids, smart cities.
- * Many types of devices: sensors, actuators, terminals.
- * Many types of data: health data, location, messages, passwords.

Problems

- * Data transmission through the air or over the Internet.
- * No encryption.
- * Initialization of communication channels without trust.
- * Limited computational resources and battery autonomy.

Physically Unclonable Functions

Fuzzy Extractors

Applications

Resear

Advantages

» Why PUFs?

- * Secure key storage.
 - $\rightarrow~$ Interesting for encryption.
- \ast Challenge-response functions.
 - $\rightarrow~$ Intesting for authentication.

Drawbacks

- * Still vulnerable to some attacks.
- * Aging effects.

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

Physically Unclonable Functions

- * Description
- * PUF Properties
- * Security Levels
- * Example of PUF Architectures

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

» Description

Physically Unclonable Function (PUF)

- * black-box function,
- $\ast\,$ based on physical variations caused by the manufacturing process of ICs,
- * one or many Challenge-Response Pairs (CRPs),
- * not totally reliable without a fuzzy extractor.

Figure: PUF challenge-response pair.

Physically Unclonable Functions

- * Description
- * PUF Properties
- * Security Levels
- * Example of PUF Architectures

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

» PUF Reproducibility

Definition (Reproducibility)

A PUF circuit reproduces, with a high probability, the same response for a given challenge.

Figure: Illustration: PUF reproducibility.

Fuzzy Extractors

Research

» PUF Uniqueness

Definition (Uniqueness)

Two PUF circuits generate, with a high probability, distinct responses for a common challenge.

Figure: Illustration: PUF uniqueness.

Physically Unclonable Functions

- * Description
- * PUF Properties
- * Security Levels
- * Example of PUF Architectures

» Security Levels

Definition (Strong PUFs)

PUF is *strong* if it satisfies two conditions:

▶ its CRPs space is very large,

 it is impossible to predict the response to an unknown challenge.

Definition (Weak PUFs)

A PUF is *weak* if its CRPs space is small, at worst of size one.

Physically Unclonable Functions

- * Description
- * PUF Properties
- * Security Levels
- * Example of PUF Architectures

» SRAM PUF

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

Description

- * Based on a Static Random-Access Memory.
- * Source of randomness: variations between inverters from SRAM cells.
- $\ast\,$ No input or memory offset used as challenge.
- * Response obtained on power-up from SRAM cell values.
- * Small number of CRPs (weak PUF).

» SRAM PUF

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

Illustration

Figure: SRAM cell logic circuit.

Figure: SRAM cell as a bistable system¹: (a) and (c) illustrate the two stable states; (b) illustrates the metastable state.

¹C. Böhm and M. Hofer. *Physical Unclonable Functions in Theory and Practice*. Springer New York, 2013. DOI: 10.1007/978-1-4614-5040-5.

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

Fuzzy Extractors

* Purpose

* Description

Physically Unclonable Function

Fuzzy Extractors

Applications

Research

Description

» PUF Problem: Noise Sources

PUFs are subject to noise

- * silicon aging,
- * environment conditions,
- * physical variations not being significant enough,

* etc.

Fuzzy extractors are necessary

- * information reconciliation: guarantees PUF reproduciblity,
- * privacy amplification: guarantees uniformly distributed key.

Fuzzy Extractors

* Purpose

* Description

Physically Unclonable Functions

Fuzzy Extractors

Applications

Resear

- » Usage
 - 1. **Enrollment**: take reference PUF response, generate key, release helper data.
 - 2. **Reconstruction**: take noisy PUF response, reproduce associated key thanks to helper data.

Figure: Fuzzy extractor procedures². Dotted arrows: enrollment; plain arrows: reconstruction. Notation: w and w' respectively are the reference PUF response and a noisy PUF response, *pub* is the helper data.

²G. J. Schrijen. *Physical Unclonable Functions to the Rescue A New Way to Establish Trust in Silicon*. 2018.

Physically Unclonable Function

Fuzzy Extractors

Applications

Research

$\ > \ \ \ Construction$

Figure: Generic fuzzy extractor construction.

Physically Unclonable Function

Fuzzy Extractors

Applications

» Secure Sketch Construction: Example

Figure: Secure sketch example: code-offset construction.

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

Applications

- * Application 1: Mutual Authentication and Session Key Establishment Protocols
- * Application 2: Privacy-preserving Tag Tracking Protocol

Fuzzy Extractors

Research

» Protocols & Setup

Mostafa et al.³ proposed two protocols:

- * two-factor mutual authentication protocol,
- * session key establishment protocol.

IoT device setup:

- * two PUFs: SRAM PUF, Arbiter PUF,
- * device enrollment:
 - ightarrow the device identifier,
 - $ightarrow\,$ a secret key extracted from its SRAM PUF,
 - $ightarrow\,$ a CRP generated by its Arbiter PUF.

³A. Mostafa, S. J. Lee, and Y. K. Peker. "Physical Unclonable Function and Hashing Are All You Need to Mutually Authenticate IoT Devices". In: *Sensors* 20.16 (2020). ISSN: 1424-8220. DOI: 10.3390/s20164361. URL: https://www.mdpi.com/1424-8220/20/16/4361.

Physically Unclonable Function

Fuzzy Extractors

Research

» Two-Factor Mutual Authenticaton Protocol

Figure: Two-factor mutual authentication protocol⁴.

⁴A. Mostafa, S. J. Lee, and Y. K. Peker. "Physical Unclonable Function and Hashing Are All You Need to Mutually Authenticate IoT Devices". In: *Sensors* 20.16 (2020). ISSN: 1424-8220. DOI: 10.3390/s20164361. URL: https://www.mdpi.com/1424-8220/20/16/4361.

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

» Session Key Establishment Protocol

Figure: Key establishment protocol⁵.

⁵A. Mostafa, S. J. Lee, and Y. K. Peker. "Physical Unclonable Function and Hashing Are All You Need to Mutually Authenticate IoT Devices". In: *Sensors* 20.16 (2020). ISSN: 1424-8220. DOI: 10.3390/s20164361. URL: https://www.mdpi.com/1424-8220/20/16/4361.

Applications

- * Application 1: Mutual Authentication and Session Key Establishment Protocols
- * Application 2: Privacy-preserving Tag Tracking Protocol

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

» Context

⁶T. Ashur et al. "A Privacy-Preserving Device Tracking System Using a Low-Power Wide-Area Network". In: *Cryptology and Network Security*. Ed. by S. Capkun and S. S. M. Chow. Cham: Springer International Publishing, 2018, pp. 347–369. ISBN: 978-3-030-02641-7.

Physically Unclonable Function

Fuzzy Extractors

Applications

Research

» Setup

- * SRAM PUF partitioned into *m* segments.
- * Each segment is used to generate a master key k_{tag} .
- $\ast\,$ Master keys are shared using a QR code.
- $\ast\,$ After deployment, every segment is used once.

Figure: Memory segments used in turn to produce master key k_{tag} .

Fuzzy Extractors

Applications

» Session key generation

- * Hash chain used to derive session keys.
- $\ast\,$ Session key and domain separator provided to a KDF:
 - \rightarrow one-time pseudonym,
 - ightarrow one-time authenticated encryption key.

Figure: Generation of one-time encryption keys k_{AE} and corresponding pseudonyms p using a master key k_{tag} , a hash function H, a key derivation function KDF and a domain separator d^7 .

⁷T. Ashur et al. "A Privacy-Preserving Device Tracking System Using a Low-Power Wide-Area Network". In: *Cryptology and Network Security*. Ed. by S. Capkun and S. S. M. Chow. Cham: Springer International Publishing, 2018, pp. 347–369. ISBN: 978-3-030-02641-7.

Physically Unclonable Functions

Fuzzy Extractors

Applications

Research

hysically Unclonable Functions

Fuzzy Extractors

Applications

Research

» Research

Supervision Professor Jean-Michel Dricot (ULB).

Research area Embedded systems design & security.

Current topic Physically unclonable functions.

Current work Off-the-shelf SRAM analysis for PUF usage. PUF-based protocol analysis and improvements.

Work packages WP1: security by design. WP4: data protection. WP6: factory (TBC).

An Introduction to Physically Unclonable Functions

Thank you for your attention.

Any Question?

» Construction Properties

Definition (Intrinsic PUFs)

A PUF is *intrinsic* if its construction is such that:

measurement of its characteristics is internal,

▶ introduction of its source of randomness is implicit.

Definition (Non-intrinsic PUFs)

A PUF is *non-intrinsic* if its construction is not intrinsic.

In general, intrinsic PUFs are preferred for security reasons.

An Introduction to Physically Unclonable Functions

» Implementation Technology

Non-electronic/hybrid PUFs

- * random variations in non-electronic materials,
- * conversion to electronic signals,
- * example: Optical PUF.

Electronic PUFs

- * random variations in electronic materials,
- * example: Power Distribution PUF.

Silicon PUFs

- * random variations in silicon chips,
- * example: SRAM PUF.

» Arbiter PUF

Description

- * Based on gate propagation delay.
- * Formed by multiple arbiter PUF circuits.
- * Arbiter PUF circuit: circuit built with multiplexers and a latch.
- * Source of randomness: variations between multiplexers.
- * Challenge bits: input to multiplexers.
- * Response bits: output from latches.
- * Many CRPs (strong PUF).

» Arbiter PUF

Illustration

Figure: Arbiter PUF circuit⁸.

⁸R. Maes. *Physically Unclonable Functions: Constructions, Properties and Applications.* Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. ISBN: 978-3-642-41395-7. DOI: 10.1007/978-3-642-41395-7. URL: https://doi.org/10.1007/978-3-642-41395-7.

An Introduction to Physically Unclonable Functions

» Optical PUF

Illustration

Figure: Optical PUF⁹.

⁹R. Maes and I. Verbauwhede. "Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions". In: Oct. 2010, pp. 3–37. ISBN: 978-3-642-14451-6. DOI: 10.1007/978-3-642-14452-3_1.

An Introduction to Physically Unclonable Functions